年产30万吨稀硝酸工艺设计说明书.docx

上传人:peixunshi0 文档编号:80460 上传时间:2025-07-10 格式:DOCX 页数:79 大小:360.82KB
下载 相关 举报
年产30万吨稀硝酸工艺设计说明书.docx_第1页
第1页 / 共79页
年产30万吨稀硝酸工艺设计说明书.docx_第2页
第2页 / 共79页
年产30万吨稀硝酸工艺设计说明书.docx_第3页
第3页 / 共79页
年产30万吨稀硝酸工艺设计说明书.docx_第4页
第4页 / 共79页
年产30万吨稀硝酸工艺设计说明书.docx_第5页
第5页 / 共79页
点击查看更多>>
资源描述

1、宜 宾 学 院化学化工学院课程设计 指导老师: 唐红梅年产30万吨稀硝酸工艺设计指导老师: 唐红梅设计组成员: 胜雪 090704022何敏 090704010王锐林 090704001张鹏飞 090704014游加奎 090704030邓聪 090704003周伟红 090704016李俊 090704015袁博 090704026张付超 090704013摘要硝酸是化学工业中重要产品之一,也是化工生产中的重要原料,用途广泛。目前世界各国采用氨氧化法生产硝酸的工艺有多种,根据氨氧化和吸收两部分的压力不同分为常压法、综合法、全中压法、全高压法和双加压法五种典型的工艺流程。现在我国硝酸生产工艺采

2、用规模较大、工艺先进环保、节能的全高压法和双加压法,俩种工艺从吸收率、环保、设备布局、装置安全稳定运行等方面,与其它工艺相比都达到较满意的效果,尤其是双加压法集中了氨耗低、铂耗低且成品酸浓度高和尾气中NO含量低的优点,体现了工艺技术先进、节能环保、生产成本低、综合技术经济指标最佳的特点,尤其适合我国国情,因此,双加压法在稀硝酸的生产中占据主导地位。关键词:稀硝酸,双加压氧化炉;铂催化剂;吸收塔;工艺计算;尾气处理目录前言3第一章总论31.1 硝酸工业的概况及发展趋势31.1.1 国外硝酸工业的现状及发展趋势31.1.2 国内硝酸工业的现状及发展趋势31.2 硝酸的性质31.2.1 硝酸的物理性

3、质31.2.2 硝酸的化学性质31.3 硝酸的用途3第二章稀硝酸生产流程综述32.1双加压法32.2 稀硝酸生产流程的确定32.3 稀硝酸生产的主要原理3第三章氨的接触氧化33.1 氨的接触氧化原理33.2 催化剂的选择33.3 铂系催化剂33.3.1 化学组成33.3.2 物理性状33.3.3 铂网的活化、中毒及再生33.3.4 铂网的损失和回收33.4 氨催化氧化的反应动力学33.5 工艺条件的确定33.6 混合气组成33.7 爆炸及其防止33.8 氨接触氧化工艺流程33.8.1 空气和氨的净化33.8.2 混合气体的配制33.8.3 反应热的利用33.8.4 工艺流程简述3第四章一氧化氮

4、的氧化34.1 一氧化氮氧化机理34.2 氧化反应的影响因素34.3 一氧化氨氧化的工艺流程3第五章氮氧化物的吸收35.1 氮氧化物吸收机理35.2 工艺条件的确定35.2.1 吸收温度35.2.2 操作压力35.2.3 气体组成3第六章工艺计算36.1 物料衡算36.1.1 反应器(氧化)36.1.2 废热锅炉(WHB)和冷却-冷凝器36.1.3 吸收塔36.1.4 生成的酸36.1.5总收率36.1.6放大至所需生产的速率36.2 能量衡算36.2.1 压缩机(透平机)36.2.2 氨气化36.2.3 氧化器3第七章主要设备的工艺计算和选型37.1氨氧化炉37.1.1 设备简介37.1.2

5、 工艺计算及选型37.2 酸吸收塔37.3 其他设备选型37.3.1 尾气透平膨胀机:向心式膨胀器P32035/111137.3.2 离心式压缩机:DA1000513第八章设计总结与讨论3参考文献34前言本设计是根据课程设计要求进行编写的,内容是年产10万吨稀硝酸(HNO3)生产工艺设计。为了全面介绍稀硝酸工艺过程设计的基本内容、基本原理,本设计共分为五章。第一章概述了硝酸的现状和趋势、硝酸的物理化学性质、用途和生产发展,说明的双加压法在当今工业生产中的重要性;第二章较详细地论述了稀硝酸的三种生产方法,确定本设计采用双加压法;第三章重点阐述了稀硝酸生产中各个环节的工艺流程,进行了物料和能量的工

6、艺计算;第四章简单介绍了典型机械设备选型与论证;最后予以总结、列明参考文献并致谢第一章总论1.1 硝酸工业的概况及发展趋势1.1.1 国外硝酸工业的现状及发展趋势目前各国硝酸工业的发展趋势是随着合成氨和硝酸磷肥的生产装置大型化而采用大机组、大装置,合理提高系统压力,提高产品浓度,降低原材料及能量的消耗,降低尾气排放浓度,以减少对大气的污染。硝酸工业形成了如下的趋势:(1)、生产规模大型化,目前最大装置为2000t/d;(2)、装置高压化;(3)、产品多样化,可生产浓、稀两种产品;(4)、尾气排放达标,目前大型装置上,特别是双加压装置已实现了15010-6的指标;(5)、催化剂不断改良;(6)、

7、能量回收合理化;(7)、总体技术提升。由于稀硝酸是半成品,其主要用途是用于制造浓硝酸、硝酸铵等,在此,借浓硝酸在国外的生产情况来反映稀硝酸在国外的生产现。目前,世界上浓硝酸的生产能力约为300万吨/年,2000年总产量为260万吨,我国浓硝酸产量82.48万吨,居世界首位。世界浓硝酸的装置能力如下:表1 世界浓硝酸装置能力及产量国别装置能力(万吨/年)开工率(%)美国32.5100加拿大30.7590墨西哥17.466西欧82.085日本24.4580中国9092总计3001.1.2 国内硝酸工业的现状及发展趋势从近几年硝酸行业发展来看,在国内硝酸盐行业超常规发展冶金和医药等下游需求快速增长的

8、推动下,我国硝酸行业的发展步伐大大加快。2006年全国硝酸产量达到了181.78万吨,同比增长了12.6%,增速同比下降了11.4个百分点,但依然实现较快增长,当年进口量3.12万吨,出口量1.2万吨,观消费量为183.7万吨,同比增长14.3%,表明下游需求旺盛。进入2007年,在硝酸下游消费稳中有增的利好因素下,行业继续保持着较好的增长势头,一季度硝酸累计产量为47.54万吨,同比增长14.35%,进口480吨出口1854吨,表观消费量为47.4万吨,同比增长14.78%。从我国硝酸工业的发展趋势来看,2006年产能的过快增长已经使得影响行业健康发展的不利因素凸显。2006年上半年,浓硝酸

9、企业外购的合成氨、原料煤、电力、铁路运价及各种辅助材料价格的大幅度上涨,加之因铁路提速而大增的自备槽车改造和安全评估费用,使浓硝酸的生产成本大幅度上升。而同时浓硝酸市场价格跳水,行业利润暴跌,许多企业被迫减产甚至停产,市场供应量大幅度波动,价格跌宕不稳。2007年以来,由于市场需求较旺,硝酸价格止跌回稳,5月以来强势上行,其中华东市场浓硝酸(98%)价格从4月底2300/吨上升至5月上旬的2350元/吨。可见硝酸工业还是很有前景的,但高价格将诱发硝酸生产恢复,增加供应量,导致价格波动,总的看来,产能增长过快仍然是硝酸行业难以承受的压力。同时人们越来越重视环境保护。因此本设计将从节能、提高氨利用

10、率、降低铂耗、提高成品酸、降低尾气排放等方面来降低成本从而提高工业生产的利润。1.2 硝酸的性质1.2.1 硝酸的物理性质硝酸(nitric acid),又名硝镪水或氮酸。纯硝酸(100% HNO3)为无色透明,具有窒息性与刺激性的液体,相对密度1.522,沸点83.4C,熔点-41.5C。硝酸腐蚀性很强, 属一级无机酸性腐蚀品,能灼伤皮肤,也能损害粘膜与呼吸道,与蛋白质接触生成鲜明的黄蛋白酸黄色物质。在-41时,呈白色雪状晶体,不稳定,在常温下分解出红棕色的二氧化氮,光和热能促其分解更快,溶于水,可以任何比例混合,溶解时放热。68.4%硝酸为恒沸混合物,具有最高沸点121.9,溶点-42(7

11、5%HNO3)。工业硝酸依HNO3量多少可分为浓硝酸(96%98% HNO3)和稀硝酸(45%70% HNO3)。纯硝酸是无色透明的发烟液体,一般商品都带且有微黄色有刺激性气味。1.2.2 硝酸的化学性质硝酸是强酸之一,氧化性很强。除金、铂及某些其它稀有金属外,各种金属都能与稀硝酸作用生成硝酸盐,如硝酸银、硝酸钠等。硝酸能使铁、铝、铬、钙等钝化而不致继续侵蚀。非金属硫、磷、硼能被硝酸氧化成相应的酸,碳则被氧化成CO2。硝酸还能够使有机物氧化和硝化。硝酸作为氮的最高价(+5)水化物,具有很强的酸性,一般情况下认为硝酸的水溶液是完全电离的。浓硝酸具有强烈的硝化作用,与硫酸制成的混酸能与很多有机化合

12、物结合成硝化物,如硝基苯、硝基萘、三硝基甲苯、硝化甘油等。浓硝酸还是强氧化剂,除金、铂、铑、铱外,可将所有金属氧化。将浓硝酸按1:3的比例与盐酸混合,其混合液称为王水。此溶液中含有氯化亚硝酰,并放出游离氯,游离氯是一种强氧化剂:HNO3+3HCl=NOCl+Cl2+2H2O, 这就是各种金属包括金、铂等之所以溶于王水中的原因所在。 1.3 硝酸的用途硝酸是基本化学工业重要的产品之一,产量在各类酸中仅次于硫酸。其用途如下:(1) 制造化肥:硝酸大部分用于生产硝酸铵和硝酸磷肥。(2) 制造硝酸盐:硝酸可用于制造金属硝酸盐,如:硝酸钠、硝酸镁、硝酸锂、硝酸铷等。硝酸锂熔点264,分解温度为600,用

13、于热交换载体。硝酸铷是制备丁二烯的催化剂。(3) 有机合成原料:浓硝酸可将苯、蒽、萘和其他芳香族化合物硝化制取有机原料。如硝酸和硫酸的混酸(工业上常用由30%与苯反应,生成硝基苯,再加氢生成苯胺,它是合成染料、医药、农药的中间体。(4) 制造草酸以农作物废料如玉米蕊、甘蔗渣、谷壳、花生壳等为原料与硝酸反应,制取草酸,硝酸与丙烯或乙烯、乙二醇作用也可制取草酸。(5) 军火工业硝酸除用于制造TNT炸药,还用它精制提取核原料。钚是重要的核燃料,在精制过程中,先将钚转化成Pu(NO3)4溶液,再萃取分离。(6) 合成香料硝酸与二甲苯反应制得二甲苯麝香气味,广泛用于调配化妆品、皂用及室内用香料。此外,硝

14、酸还用于化学试剂及有色金属酸洗涤。也用来鉴别含有蛋白的物质加羊毛,羽毛等。第二章稀硝酸生产流程综述2.1双加压法此法氨的氧化采用中压(0.350.6MPa),NOX的吸收采用高压(1.01.5MPa)。我国于1986年在山西天脊集团建成2套920t/d的双加压法生产装置,形成540Kt/a 规模,为我国硝酸工业的技术提高起到了推动作用。此法吸收全中压法和高压法的优点,并可采用比全高压法更高的吸收压力,对工艺过程更为适用。使氨的损耗与铂催化剂的损耗较少,吸收率高,吸收系统采用高压,容积减少,酸浓度高,生产强度大,经济技术指标最优化,生产成本低,尾气中NOX含量低,是彻底的清洁技术,符合国际上的排

15、放要求,基建投资适度,能量回收综合利用合理,是最具发展的流程。缺点是流程复杂,设备制造要求高,操作控制要求严,管理水平要求高。衡量一种工艺流程优劣的标准,主要是技术经济指标和设备的投资。而氨氧化法生产稀硝酸的技术经济指标主要包括氨耗、铂耗、电耗和冷却水消耗等。 表2 三种稀硝酸生产工艺的主要技术经济指标生产方法常压法加压法综合法项目常压法中压法高压法常压氧化-加压吸收双加压法氧化压力/MPa(绝)0.110.220.450.80.90.100.45吸收压力/MPa(绝)0.0980.1800.400.70.80.351.1氨氧化率%96979695969796酸吸收率%859298979699

16、7成品酸度%40455053535543455860尾气NOX浓度(10-3)5101.01.52.02.52.50.2吨酸总氨耗/t0.3080.3300.2930.3040.2900.283吨酸铂耗/g0.060.10.180.20.060.12.2 稀硝酸生产流程的确定尽管稀硝酸生产流程很多,但衡量一个流程的优劣应根据实际条件的不同,如生产规模,成品酸浓度要求,氨原料成本及公用工程费用等,采用不同流程。通过上节的比较,可知全中压法与双加压法较优。由于本设计的生产规模是年产6万吨稀硝酸,而双加压法单机组生产能力大,适用于较大型硝酸装置,所以本设计选用中压法流程来生产稀硝酸。其工艺流程方块

17、图见下图:液氨氨过滤器氨预热器氨蒸发器文氏管混合器混合过滤器氧化炉空气泥袋过滤器空气透平压缩机机素瓷过滤器副产蒸汽水冷却器尾气预热器水加热器废热锅炉尾气尾气透机平放空第一吸收塔第二吸收塔10%11%稀硝酸冷凝水二次空气稀硝酸生产工艺流程图2.3 稀硝酸生产的主要原理氨接触氧化法制硝酸的总反应式为:NH3+2O2=HNO3+H2O,反应可分三步进行:氨的接触氧化过程:在催化剂的作用下,将氨氧化为一氧化氮,其反应式为:4NH3+5O2=4NO+6H2O (1)一氧化氮氧化过程:将前一过程中生成的NO进一步氧化成NO2,其反应式为:2NO+O2=2NO2 (2)氮氧化物的吸收过程:用水吸收二氧化氮,

18、从而得到产品硝酸,其反应式为:3NO2+H2O=2HNO3+NO (3)用此工艺可生产浓度为45%60%的稀硝酸。60年代后,硝酸生产的技术特点是,采用大型化组,适当的提高操作压力。采用高效设备,降低原料及能量消耗,解决尾气中氮氧化物的污染问题。第三章氨的接触氧化3.1 氨的接触氧化原理由于催化剂和反应条件不同,氨与氧相互作用可生成不同的产物4NH3+5O2=4NO+6H2O H=-907.28 KJ/mol (1)4NH3+4O2=2N2O+6H2O H=-1104.9KJ/mol (2)4NH3+3O2=2N2+6H2O H=-1269.02KJ/mol (3)以上均为强烈放热反应。除此之

19、外,还可能发生下列副反应:2NH3=N2+3H2 H=91.69 KJ/mol (4)2NO=N2+O2H=-180.6KJ/mol (5)4NH3+6NO=5N2+6H2O H=-1810.8KJ/mol (6)由于一氧化氮是生产硝酸的中间物,因而希望反应能按式(1)进行,其余反应则设法使之不进行的程度很小。为此,首先要研究这些反应的特点,即讨论在什么条件下才有利于一氧化氮的生成。根据实验测定不同温度下反应式(1)式(4)的平衡常数。列于下表: 表3 不同温度下氨氧化或氨分解的平衡常数(P=0.1MPa)平 衡 常 数温度/k 反应式(1)反应式(2)反应式(3)反应式(4)3006.410

20、417.310477.310561.710-35001.110264.410287.110343.37002.110192.710202.610251.11029003. 810157.410151.510208.510211003.410119.110126.710163.210313001.510118.910103.210148.110315002.010103.01096.210121.6104从上表可知,在一定温度下,几个反应的平衡常数都很大,实际上可视为不可逆反应。比较各反应的平衡常数,以式(3)最大。如果对反应不加任何控制而任其自然进行,氨和氧的最终反应产物必然是氮气。欲获得所要

21、求的产物NO,不可能从热力学去改变化学平衡来达到目的,而只可能从反应动力学方面去努力。即要寻求一种选择性催化剂,加速反应式(1),同时抑制其他反应进行。3.2 催化剂的选择通过大量催化剂筛选实验,至今可供工业使用的选择性良好的催化剂归纳起来有两大类。一类是以金属铂为主体的铂系催化剂。另一类是以其它金属为主体的催化剂,如铁铋催化剂、钴铝催化剂等,通称为非铂系催化剂。非铂系催化剂的优点是,比较价廉易得,新制备的非铂系催化剂活性往往较高。其缺点是活性容易降低,活性温度范围较窄,且氨氧化率低,仅为80%87%。用过的催化剂不容易点着,由催化剂节省的费用并不能抵偿由于原料氨耗增大所产生的费用,因而非铂系

22、催化剂未能在工业上大规模应用。铂系催化剂虽然价格昂贵,但因铂催化剂或铂合金催化剂是接触效率最好的催化剂,而且能在长时期中保持高度的活性,具有足够的化学稳定性和机械强度,易于再生,容易点燃,操作方便。因此,国内外用氨接触氧化法制造硝酸均用铂及铂合金催化剂。通过上述比较,本设计选用铂系催化剂。3.3 铂系催化剂3.3.1化学组成以纯铂作为氨氧化催化剂,在温度为800900的操作条件下,纯铂催化剂活性并不高,且在强大气流连续冲击下铂表面变得松弛不平,铂表面疏松的铂微粒易被气流带走。但铂的合金性能很好,即具有高的机械强度,而且活性比纯铂还高。铂的合金一般是铂和铱、铂和铑或铂和钯的合金,由含5%7%的铑

23、的铂铑合金的特点是活性高、机械强度大、铂损失减小。但铑比铂昂贵的多,因此有时采用铂铑钯三元合金。由于钯的加入可减少铑的用量。目前最常用的铂、铑、钯三元合金组成为铂93%、铑3%、钯4%。也有采用铂铱合金者,如铂99%、铱1%,其活性也很高。铂系催化剂中如果含有少量杂质如铜、铝、银,尤其是铁,都会使氨的接触氧化率降低。因此,用来制造铂系催化剂的铂必须非常纯净。3.3.2物理性状铂催化剂通常不用载体,以利于铂的回收;而且载体容易破裂,外露的载体会促使氨分解,降低氨氧化率。工业上要求催化剂单位重量的接触表面积应尽可能大,而铂合金具有较好的延展性和机械强度,因而工业上利用这一特性,都将其拉成细丝织成网

24、状。由于铂的导热性好,开工时一经点火即能投入生产,因而铂网也便于再生和回收,还可使氧化炉的结构简化。通常所用的铂丝直径为0.0450.09mm。铂网的自由面积约占整个面积的50%60%。现今铂网尺寸已规范化,常见的铂网直径规格有1.1、1.6、2、2.4、2.8、3.0m的。3.3.3铂网的活化、中毒及再生(1)、活化新的铂网表面光滑且有弹性,使用时不能立即获得高的NO得率,需经一段活化时间才能提高。如在600时,其活性需经数昼夜方能升高。在900时,活化时间则可缩短到816h。活化一般用氢焰烘烤,使铂表面变得疏松,粗糙而失去光泽,从而增大其反应接触表面,提高活性。使用过的铂网若以后再用时可以

25、不必再活化。(2)、中毒铂网对杂质敏感,易中毒。能使铂网中毒的物质有:PH3:它对铂具有强烈中毒作用,属于永久性中毒。气体中含0.00002% PH3时,氨氧化率可降至80%。当含量为0.02%时,氧化率会降至3.9%。铂网永久中毒不能再生。H2S:当气体中含H2S浓度很小时,会使铂网暂时中毒。若气体中含1% H2S时,铂的活性就会降低百分之几。C2H2:乙炔能使铂网暂时中毒。乙炔自身能燃烧,使铂网温度升高,会使氧化率降至65%-70%。硝酸车间禁止用乙炔焊接。苛性碱对铂网亦有毒害作用,并能腐蚀铂网。水蒸气虽对铂网无毒,但会降低铂网温度。空气中含有的灰尘(主要是各种金属氧化物)和氨气中可能带来

26、铁粉等机械杂质。遮盖在铂网表面,会造成暂时中毒。此外,若气体中夹带润滑油,油燃烧后残留的炭会渗入铂中,也能降低催化剂活性。(3)、再生为了防止铂催化剂中毒,必须先将原料气严格净化。即使如此,随着工作时间增长,铂网仍会逐渐中毒,故一般使用36个月后,就应将它进行再生处理,以除去毒物和污垢。再生方法是先将铂网取出,用水冲洗杂质和灰尘,然后在温度6080下,用浓度为10%15%盐酸溶液浸渍12h,然后取出,用蒸馏水洗涤至无氯离子和溶液呈中性为止。干燥后再用氢焰灼烧,而后活化,活化时间可比新网短些。如此,活性即可恢复正常。3.3.4铂网的损失和回收(1)、损失铂网在使用中受到高温和气流的冲刷,表面会发

27、生物理变化,细粒极易被气流带走,造成铂的损失,铂的损失量与反应温度、压力、网径、气流方向以及作用时间等因素有关。当温度高、网径细、气流方向由下往上所导致网振动大等因素均会使铂网损失加大,一般认为,当温度超过880900时,铂的损失会急剧增加。在常压下,氨氧化温度通常取800左右,加压下取880左右。铂网的使用期限一般约为两年或更长一些时间。(2)、工业上回收铂的方法由于铂是价昂的贵金属,目前工业上有机械过滤法、捕集网法和大理石不锈钢筐法可以将铂加以回收。、机械过滤法在废热锅炉后面设置一个玻璃纤维作为过滤介质的过滤器,用以回收铂,但使系统压力降较大。也有将二氧化锆(ZrO2)、氧化铝(Al2O3

28、硅胶、白云石或沸石等混合物制成58mm厚的片状,共4层,层总高为23cm,置于铂网之后,以回收铂粒。、捕集网法此法是在铂网后面设置一张或几张与铂网直径相同的合金网。该合金网含有钯80%、金20%。在750850下被气流带出的铂微粒通过铂捕集网法时,铂被钯置换。铂的回收率与捕集网数、氨氧化的操作压力和生产负荷有关。常压时,用一张捕集网可回收60%70%的铂;加压氧化时,用两张网回收60%70%的铂。、大理石不锈钢筐法在置于铂网后面的不锈钢筐中盛入粒度为35mm的大理石,在600时大理石开始分解成CO2和CaO。在750850时,CaO能吸收铂微粒而形成淡绿色的CaOPtO2。此法铂回收率可高

29、达80%97%。本设计采用捕集网法来回收铂。3.4 氨催化氧化的反应动力学氨氧化生产NO的反应,需有4个分子氨与5个分子氧碰撞一起才能生成NO。事实上9个分子同时碰撞在一起的概率是极小的。所以,该式只不过是反映参与反应的反应物之间的一种量化关系,并不代表真实的反应机理。氨氧化生成NO的反应机理遵循一般气固催化反应的基本规律。包括反应物分子先从气相扩散到催化剂表面,而后在催化剂表面进行反应,然后反应物从催化剂表面扩散到气相中去。曾有人认为,在铂网表面上氨的氧化,按下图所示机理进行。ONHoooooHHHNNHHHoooooHHHNNH催化剂铂催化剂表面生成NO的图解1. 从氨氧化的反应理论来说,

30、预使这个反应得以进行,首先应使以强大共价键相结合的氧分子(键能为498KJ/mol)能够解离出氧原子。但是即使在200,其解离度仍不到1%。工业上,利用铂表面活性中心具有能首先吸附氧分子的强大吸附力,从而大大削弱了氧分子的键能,降低了该反应活化能的能峰,为反应创造了首要的良好条件。2. 在铂催化剂表面靠范德华力吸附而形成第一层吸附层后,剩余的范德华力仍再可吸附氨分子以形成第二层吸附层。3. 吸附在催化剂表面的氧原子与被吸附的分子中的三个氢分别结合,通过分子重排生产NO和水蒸气的吸附力较弱,两者则从催化剂表面脱附(解吸)出来,向气相进行扩散。 研究认为,在上述各阶段中,以氨分子至铂网表面的扩散速

31、度最慢的一步,因而整个反应速度是受外扩散所控制。3.5 工艺条件的确定原料氨在硝酸生产成本中占有很大的比重,故在生产过程中必须保证氨的高氧化率()。按现今技术水平,常压下可达97%98.5%,在加压氧化下可达96%97%。其次,应有尽可能大的生产强度;在生产条件下的铂耗为最小;最大限度的保证铂网有效工作时间,以达到稳产、高产、安全生产的目的。以下讨论氨氧化的一些主要工艺条件温度、压力和接触时间对反应的影响。1. 温度在不同温度下,氨氧化后的反应生成物也不同。低温时,主要生成的是氮气。650时,氧化反应速率加快,氨氧化率达90%;7001000时,氨氧化率为95%98%。温度高于1000时,由于

32、一氧化氮分解,氨氧化率反而下降。在6501000范围内,温度升高,反应速率加快,氨氧化率也提高。但是温度太高,铂损失增大,同时对氧化炉材料要求也更高。因此一般常压下,氧化温度取750850,加压氧化取870900为宜。2. 压力氨氧化反应实际上可视为不可逆反应,压力对于NO产率影响不大,但加压反有助于反应速度的提高。在工业生产条件下,加压时氧化率比常压时氧化率低1%2%。尽管加压可导致氨氧化率降低,但由于反应速度的提高可使催化剂的生产强度增大。尤其是压力提高可大大节省NO氧化和NO2吸收所用的昂贵不锈钢设备。生产中究竟采用常压还是加压操作,应视具体条件而定。一般加压氧化采用0.30.5MPa压

33、力,国外有采用1.0MPa。由于本设计选用全中压法,操作压力选为0.45MPa。3. 接触时间混合气体在铂网区的停留时间称为接触时间。当铂网规格和层数不变时,在一定的时间内,流过的气体量越大,气流速度越快,接触时间也就越短,催化剂的生产强度就越大。当接触时间太长即气流速度太慢,氨在铂网前高温处停留时间过长,会引起氨的分解,同时还会引起已氧化生成的一氧化氮的分解,从而降低氧化率。2NH3=N2+3H22NO=N2+O2当接触时间太短即气流速度太快时,在铂网上生产的中间产物羟氨(NH2OH)来不及在铂网上分解,离开铂钢后再分解,而生成氮。另外,有部分氨滑过铂网,与生成的一氧化氮作用,生成氮气和水蒸

34、汽,因而也降低于氨氧化率。 6NO+4NH3=5N2+6H2O由上述可见,接触时间太长或太短均使氧化率降低。因此实际生产中如何选择一个适当的接触时间,对于提高氨的氧化率是非常重要的。常压下:气体在接触网区内的流速w0.3m/s;加压时:由于反应温度较常压高,铂网前的温度也升高,为避免NH3在铂网内的接触时间过长,加压操作就必须采用多层铂网。本设计所选用的接触时间见设备选型一章。3.6 混合气组成氨氧化的混合气中,氧与氨的比值(O2/NH3=r),是影响氨氧化率的重要因素之一,当混合气中氧浓度增加时,r值增加,有利于NO的生成,使氧化率增加。若增加混合气中氨浓度,则可以提高铂网的生产强度。选择O

35、2/NH3比值时应全面考虑。硝酸制造过程,除氨氧化需氧外,后工序NO氧化仍需要氧气。在选择O2/NH3比时,还需要考虑NO氧化所需的氧量。因此,需考虑总反应式:NH3+2O2=HNO3+H2O式中, r= O2/NH3=2,配制r=的氨空气混合气,假设氨为1mol,则氨浓度可由下式算出 NH3=9.5%氨氧化时,若氨的浓度超过9.5%,则在后工序NO氧化时必须补加二次空气。氧氨比在1.72.0时,对于保证较高的氨氧化率是适宜的。工业生产中,为提高生产能力,一般均采用较9.5%更高的氨浓度,通常往氨-空气混合气中加入纯氧配制成氨-富氧空气混合物。必须注意,氨在混合气中的含量不得超过12.5%13

36、否则便有发生爆炸的危险。若在氨-富氧空气中加入一些水蒸气,可以降低爆炸的可能性,从而可适当提高NH3和氧的浓度。3.7 爆炸及其防止根据气体的爆炸理论,任何爆炸气体都存在着与爆炸界限所相应的爆炸浓度。当易爆气体含量落于爆炸界限内,其爆炸危险性极大,若爆炸气体含量低与后高于爆炸界限范围则其爆炸危险性就小了。若氨空气或氨氧混合物含量大于14%,温度为800以上是则有爆炸危险。影响气体爆炸界限的因素较多,但主要有如下几点:、爆炸前的温度。温度愈高则爆炸界限愈宽,也即说在此情况下愈易发生爆炸。下表是氨-空气混合物的爆炸界限与温度关系的实验测定值。氨-空气混合物的爆炸界限气体火焰方向爆炸极限(以NH

37、3 %计)18140250350450向上16.126.61528.71430.41332.212.333.9水平18.225.61727.515.929.614.731.113.533.1向下不爆炸19.926.317.828.2163013.432.0、混合气体的流向。由上表可见,气体由下而上通过时,因这种情况易引起氧化炉发生振动,故爆炸界限放宽。、氧含量。由下表可见,氧含量越高,爆炸界限越宽。NH3-O2 -N2混合物的爆炸界限(O2 +N2)混合气中的氧含量/%203040506080100爆炸极限NH3 /%最低22171819191813.5最高31465764697782、压力。

38、氨空气混合气的压力越高,越易爆炸。、容器的表面和容积之比。对容器的散热速度有影响。比值愈大,则散热速度愈快,愈不容易发生爆炸。、当混合气体中有可燃性杂质存在时,其爆炸速度和爆炸的威力增强。例如,当氨一空气混合物中含有2.2%H2时,则氨的着火下限自16%降至6.8%。、水蒸汽的影响。完全干燥的混合气体推动爆炸能力。当混合气体中含有大量水蒸汽时,氨的爆炸界限可变得狭窄。因此,在氨一空气混合物中加有一定量的水蒸气时,则可减少爆炸的危险性。总而言之,为了保证安全生产,防止爆炸,在设计和生产中要采取必要的措施。严格控制操作条件,使气流均匀通过接触网,合理设计接触氧化设备,添加水蒸汽,避免引爆物的存在等

39、3.8 氨接触氧化工艺流程3.8.1空气和氨的净化为了防止铂催化剂中毒,必须将空气和氨加以净化,以除去其中的尘埃、铁锈、油污及基本些有害气体。氨在本设计中来自液氨,少量由钢瓶内的气氨供给,他们都需要经过过滤器除杂。这是保证氧化率及安全生产的重要条件。净化空气的设备类型很多,国内硝酸生产中多采用三段净化法。第一段空气在填料塔或筛板塔内用水洗涤,水洗后空气经过气液分离器;第二段将空气通过粗毛呢做成的袋式过滤器过滤;第三段与来自氨过滤器的氨混合后一起用纸板或多孔素瓷器管制成的过滤器进一步除去机械杂质。生产实践证明,现今大多数厂已不用水洗,只用二段干法过滤即可。为了防止铁锈对铂网的污染,位于氧化炉以

40、前的系统管线全部采用铝或镍铬不锈钢等材质制成。3.8.2混合气体的配制氨和空气送到铂网以前务必混合均匀。这是保证氧化率和防爆的必要条件。配制混合气体的方法有干式和湿式两种。、干式将氨和空气按比例分别送入用同一电机或汽轮机带动的氨气和空气送风机,再经混合器制成氨一空气混合气。这样,即便便于调节混合气的组成,又可在电机或汽轮机停机时,同时自行停止氨和空气的输送,从而防止一旦混合气中氨含量过大而引起爆炸。、湿式先将氨水制成浓氨水,再在发生塔内用空气气提氨,即使氨解吸制成氨一空气混合气。留下的稀氨水则用泵送到吸氨塔循环使用。此法的优点是操作稳定,但氨水循环流程复杂,开工是需先制得一定浓度的氨水,不如干

41、式法简便。本设计是选用干法混合气体。3.8.3反应热的利用在氨氧化流程中必须考虑反应热的回收利用问题。氨氧化是强烈放热反应,从氧化炉出来的气体温度约800,而后继工序NO的氧化以及NO2的吸收都要求在低温下进行,因而必须设法将反应热加以回收。其方法是使高温气体通过废热锅炉用以产生动力蒸汽,使之驱动蒸汽透平或产生饱和蒸汽以作他用。此外,根据工艺流程不同,可将部分热量用来预热空气或NO2吸收后的尾气,以节省蒸汽透平的动力。3.8.4工艺流程简述空气通过粗毛呢过滤器和素瓷过滤器,除去机械杂质和化学杂质。而来自合成氨系统的液氨,在氨过滤器中除去油污和机械杂质后蒸发成氨蒸汽,与净化过的空气在混合器内混合

42、预热后一起由鼓风机送入纸板过滤器和氧化炉。经过氧化后氨氧化物气体从氧化炉出来直接进入废热锅炉,在此产热能得到回收生动力蒸汽,氨氧化物气体冷却到一定温度后在快速冷却器中冷却。在这里大量水蒸气被冷凝下来,并有少量的NO被氧化成NO2,而溶入水中,形成2%3%的稀硝酸排出系统。第四章一氧化氮的氧化4.1 一氧化氮氧化机理氨接触氧化后的气体中,主要含NO、O2、N2和水蒸汽,将一氧化氮继续氧化,便可得到氮的高级氧化物NO2、N2O3、N2O4:2NO+O2=2NO2H=-112.6 KJ/mol (1) 2NO2=N2O4H=-56.9 KJ/mol (2) NO+NO2=N2O3 H=-40.2

43、KJ/mol (3)上述三个反应均为放热和体积减小的可逆反应,因而降低温度和增加压力会使反应平衡向右移动,即有利于一氧化氮的氧化。式(2)和(3)的反应速度较快,NO和NO2生成N2O3的速度0.1S内便可达到平衡。NO2叠合成N2O4的速度更快,在10-4S内便可达到平衡。NO氧化成NO2是硝酸生产中重要的反应之一。与其他反应相比,这是硝酸生产中最慢的一个反应,是整个氧化过程的控制步骤。因而如何提高NO的氧化速度是硝酸生产中的一个重要问题,而影响两者的因素有温度、压力、NO的初始质量和O2含量等。4.2 氧化反应的影响因素 2NO+O2=2NO2H298=-112.6kJ温度有上式可知该反应

44、是放热反应,因此降低温度能加快NO氧化反应速度。压力该反应为体积缩小的反应,当其他条件一定,增加操作压力,可以减小反应容积,促使平衡向右移动,氧化所需时间减少很多,可以大大加快NO的氧化速度。气体组成根据实验,知一氧化氮氧化反应的反应速度与一氧化氮和氧的浓度均成正比。所以增加气体中NO的浓度,可以大大加快反应速度,缩短反应所需时间。但实际生产中,一氧化氮浓度受到氨氧化过程的限制,因为氨氧化时气体中氨的浓度小于12%,因此,要提高反应速度,就只有增加氧浓度着手。用氨空气混合气进行接触氧化时,若氨的浓度在9.5%以上,则在以后的工序中还在添加含氧气体(称二次空气)。加入含氧气体量的多少,应能保证NO的氧化速度尽可能大。氧化所需空间尽可能小为原则,这就要确定一个最适宜浓度,一般情况下氧浓度为加入含氧气体的1/3为宜。综合上述,良好的NO氧化工艺条件应是:加压、低温及适宜的气体含量。4.3 一氧化氨氧化的工艺流程良好的NO氧化工艺条件应是:加压、低

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医学/心理学 > 药学

宁ICP备18001539号-1